agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi Henryk,
This is actually a difficult question. I'd be inclined to say "no", as the hypotheses are computed on different data. It seems to me that you need the BF for the interaction between congruency and red/green trials. So I'd model all the data at once, and not do separate analyses and then bring them together later.
Cheers,
E.J.
Thanks for your quick reply!
Unless I am wrong, the Congruency x Red/Green interaction term would inform me about whether considering red/green separately is better than not considering separately. (hypotheses: H0 = null model (or only main effects), H1 = model with interaction).
In my case, I expect the presence of a congruency effect for both green and red trials so it is rather unlikely that H1 will be favored over H0 in the interaction term.
What I am interested into specifically is to quantify to what extent the congruency effect is "stronger" in Bayesian terms in red trials than green trials (thus irrespective of whether this congruency difference is high enough to support H1 over H0).
So, since in my case red and green trials have:
Are you sure I cannot state "H1 for red trials is (X times) more likely than H1 for green trials" ?
Sorry to insist :-)
Henryk
Hi EJ again,
I think you are right that then the best way is to directly test the difference between red and green trials.
However, do you have a way to directly test whether evidence for H1 is higher in red trials than green trials. You suggested to test the interaction term in the repeated ANOVA (color (red/green) x congruency (con/incongruent)) but then this doesn't really test the wanted comparison, is it?
My understanding is that testing the interaction term only tests whether separating red and green trials explains better the data than not separating them (null model), which is not equivalent to test whether evidence for H1 in red trials is higher than green trials. What do you think?
Well, the evidence is the evidence. So if BF = 3 in condition X, and BF = 4 in condition Y, then the evidence is larger for Y than for X. So what you really want to know, it seems, it whether effect size is larger in one condition than in the other, and that brings me back to the interaction.
E.J.