agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi Per,
I can't quite remember, but I think that SPSS can run this test?
in the JASP help documentation I find:
Chi-squared Test: The fit of the model is tested. When the test is significant, the model is rejected. Bear in mind that a chi-squared approximation may be unreliable for small sample sizes, and the chi-squared test may too readily reject the model with very large sample sizes.
Simply put, this means a significant test shows a poor fit between the model and the data. I would recommend you look at additional fit indices that JASP can also provide i.e. TLI etc.
Best,
Tarandeep
@TarandeepKang Thank you🙏🏻. That was very helpful. Do you have any other reading tips on the topic?
Per😎
Hi Per,
These two are good general ones from the help file
Osborne, J. W., Costello, A. B., & Kellow, J. T. (2008). Best practices in exploratory factor analysis. In J. Osborne (Ed.), ), Best practices in quantitative methods (pp. 86-99). SAGE Publications, Inc. https://doi.org/10.4135/9781412995627.d8
Yong, A. G., & Pearce, S. (2013) A Beginner’s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis, Tutorials in Quantitative Methods for Psychology, 9(2), 79-94. doi: 10.20982/tqmp.09.2.p079
and this is also a good recent review:
Goretzko, D., Pham, T.T.H. & Bühner, M. Exploratory factor analysis: Current use, methodological developments and recommendations for good practice. Curr Psychol 40, 3510–3521 (2021). https://doi.org/10.1007/s12144-019-00300-2
Best,
Tarandeep-
@TarandeepKang
Hi,
Could you help me to understand the difference how to interpret the p-value in the Chi square table vs in the Bartlett test table when running an EFA in JASP?
Kind regards
Per
When conducting an Exploratory Factor Analysis (EFA) in JASP, both the Chi-square test and the Bartlett's test of sphericity are crucial in evaluating the data's suitability for factor analysis. However, their interpretations differ due to the distinct hypotheses they test. Here's a detailed explanation of how to interpret the p-values in each context:
Chi-Square Test in EFA
Purpose:
The Chi-square test in EFA is used to evaluate the model fit, particularly when assessing how well the factor model reproduces the observed correlation matrix.
Null Hypothesis:
The null hypothesis (H₀) states that the factor model fits the data perfectly, meaning there is no significant difference between the observed and reproduced correlation matrices.
Interpretation of p-value:
A high p-value (typically > 0.05) suggests that there is no significant difference between the observed and reproduced matrices, implying a good fit of the factor model to the data.
A low p-value (typically < 0.05) indicates that there is a significant difference between the observed and reproduced matrices, suggesting a poor fit of the model.
Usage in Decision Making:
If the p-value is low, it may indicate that the model needs to be adjusted, perhaps by increasing the number of factors or modifying the model structure.
However, it's important to consider the sample size, as large samples can make the Chi-square test overly sensitive, often resulting in low p-values even when the model fit is acceptable.
Bartlett's Test of Sphericity
Purpose:
Bartlett's test of sphericity assesses whether the correlation matrix is significantly different from an identity matrix, which would indicate that the variables are unrelated and unsuitable for factor analysis.
Null Hypothesis:
The null hypothesis (H₀) for Bartlett's test states that the correlation matrix is an identity matrix, meaning there are no correlations between the variables.
Interpretation of p-value:
A low p-value (typically < 0.05) indicates that the correlation matrix is not an identity matrix, suggesting that there are significant correlations among variables, making the data suitable for factor analysis.
A high p-value (typically > 0.05) suggests that the correlation matrix is close to an identity matrix, indicating insufficient correlations among variables for factor analysis to be appropriate.
Usage in Decision Making:
A significant p-value (low) supports proceeding with factor analysis, as it confirms the presence of sufficient correlations among the variables.
If the p-value is not significant (high), it may be necessary to reconsider the dataset or the variables included in the analysis.
Summary
Chi-Square Test:
High p-value: Good model fit.
Low p-value: Poor model fit (potentially adjust the model).
Bartlett's Test of Sphericity:
Low p-value: Data is suitable for factor analysis (sufficient correlations).
High p-value: Data is not suitable for factor analysis (insufficient correlations).
✅
Thank you very much @TFGs2022 for very clear and coherent explanation.🙏🏻
Per😎
Halo! Untuk membantu Anda, saya pikir diperlukan permintaan yang lebih tepat. Jika tidak, orang-orang hanya akan mengarahkan Anda ke literatur tentang analisis faktor. Anda juga dapat memeriksa manual JASP (di situs JASP) dan contoh kumpulan data di Perpustakaan Data JASP. Selain itu, alangkah baiknya jika Anda dapat menggunakan Google Translate untuk mengirim pesan Anda dalam bahasa Inggris :-)
Cheers,
E.J.