agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi there,
details on the calculation of MAD and AUC in mousetrap are described here: http://pascalkieslich.github.io/mousetrap/reference/mt_measures.html#details-1 (and in general how deviations from the idealized straight line are calculated is described here http://pascalkieslich.github.io/mousetrap/reference/mt_deviations.html).
I think that the challenge in your data is that the x position of the start of your trajectory and the end are very closely to each other, which is unusual for mouse-tracking experiments where the cursor usually starts somewhere in the bottom center of the screen and then ends either in the top-left or top-right corner. This might cause the weird behavior, as outlined in the following example: Let's say you have a trajectory the starts in the bottom center, then is slightly curved towards the right, and then moves towards an option at the top that is slightly left of the start position. In this case you get a positive MAD (as the deviation is considered to be "above" the idealized straight line). Now if the trajectory shape looks similar but the end position is slightly right of the start position, you get a negative MAD (as the deviation is now considered to be "below" the idealized straight line). In typical mouse-tracking experiments this does not occur as the options between a person is choosing are clearly left and right of the start position.
Best regards,
Pascal
That makes sense!
I also have the 'normal' set up with two end points left and right (everything is equidistant from start). Would it make sense to align them in the same workflow first or analyze them as two distinct dataset and merge them at the end? I get vastly different results if I align them as one dataset or align this 'straight' line dataset. I've tried to look into the 'raw' code, but do not fully understand what the align package is doing.
I'll probably write a wrapper around mousetrap to analyze the 'straight line' in the end. Happy to share.
The specific mt_align function only makes sense for trajectories that come from the same layout. The mt_align_start function could also work for trajectories from different layouts.
Yes, sharing the code you develop for the special case trajectories sounds great!