Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

Calculating Cauchy scale from Cohen d confidence interval?

Dear EJ,

I have been reading on previous posts and blogs on informed prior parameters but I could not find info on how to calculate the scale (or width) of the Cauchy distribution for informed priors.

Location is easy, I simply take the effect size (Cohen d for t-test).

However, for scale, it was less clear.

My reading of this blog ( led to understand that scale is here based on a confidence interval around the informed/expected effect size.

So, would it be correct to compute the 95% confidence interval of my previous study's Cohen d effect size and use it to calculate the Cauchy scale?

But then, if so, how should I translate it into the Cauchy scale?

Simply cut in half my half CI. Eg. if CI = 0.257 to 1.091 centered on 0.679 then I use 0.412 as scale?

I am guessing it is more complex that ! Could you tell me how?

Thanks a lot in advance!



  • Hi Henryk,

    I am not 100% on what you want to accomplish. When you use the Cauchy prior, you simply stipulate it; nothing is calculated from data. Perhaps you want to use existing data to construct a prior? In that case, keep in mind that when you start with a Cauchy prior and data come in, the end result is no longer a Cauchy. These papers might be of use: and

    However, if you nonetheless like to use prior data to determine the location and scale of a Cauchy, then the simplest method is to use a method-of-moments estimator. The location of a Cauchy distribution is its median, and the scale parameter is its interquartile range. So you could just take the median and IQR of the data and plug those in as parameters of the Cauchy. At least that does not seem too unreasonable to me.



  • Thanks a lot, EJ!

    I read your paper "Replication Bayes factors from evidence updating".

    I like very much the easy trick to compute the BF of Xp2 that takes into account the posterior distribution of Xp1 as prior distribution !

    i.e. dividing the global BF (obtained by merging data of Xp1 and Xp2) by the BF of Xp1

    My follow-up question is : In your paper (Figure 3) you used a uniform distribution as prior to assess the global BF but this is not possible to enter uniform distribution via JASP (for a independant sample t-test).

    Is there a way to enter a uniform distribution as priors (which equates as an absence of prior knowledge, right?)?

    Alternatively : could it be that it doesn't matter whether we compute the global BF with the default Cauchy or a uniform distribution? If global BF and BF of Xp1 are both calculated with the same Cauchy prior, I guess it's fine to use the trick?

    Thanks again !

  • Hi Henryk,

    Whether or not the uniform distribution is appropriate for testing depends on the scale. So for a correlation coefficient or a probability, a uniform prior may be acceptable. For the t-test, however, it is not. The reason is that effect sizes for the t-test can range from -infinity to +infinity, and the uniform distribution would be improper (i.e., it does not integrate to 1). The "easy trick" works for any legitimate prior distribution, but in the case of the t-test the uniform does not quality as legitimate (at least not for testing). The uniform (or something very wide, say a Cauchy with scale 1000) also does not represent absence of knowledge, because it predicts that the effect is almost certainly humongous.



  • Thanks a lot for clarifying!

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games