agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi Jonas,
With the BF in hand (say 3 in favor of the null), you need to determine your own prior model odds (say 3 in favor of the alternative). Multiplying these numbers yield the posterior odds (in this case, 3 * 1/3 = 1). Then you can transform these odds to a posterior probability (here, 1/(1+1) = 0.5). We don't generally allow users to input prior model odds but we may add this in the future.
Cheers,
E.J.
Hi E.J.,
great, thanks for this very quick and understandable answer. However, I do have a follow-up question(s):
I guess the prior odds are computed by p(H0)/p(H1). Are the prior odds then just an effect size (normally in favor of H1) you would expect?
And I was also a bit confused that in JASP you provide prior information for the effect size of H1 (is this denoted as Cohen's d for Bayesian t-tests?) to compute the BF. But is this prior information not the very information you would need to compute the prior odds?
Sorry if may questions just show a lack of understanding.
Cheers,
Jonas
Hi Jonas,
It is indeed a little confusing, because "prior" means different things. On the level of models, the prior p(H1) means "what is the relative plausibility of H1?"; on the level of parameters within a model it means "what is the relative plausibility of specific effect sizes, given that the model holds? (e.g., given that H1 is true, what effect sizes do I expect)".
For the t-test, prior information on effect size is indeed on Cohen's d (the population version, so true mean mu/true standard deviation sigma). But note that this prior (which JASP lets you specify) is for the effect sizes you expect, given that H1 is true. The prior probability that H1 is true is something else, and this is what you need for the prior model odds.
Cheers,
E.J.
Hi E.J.,
thanks for pointing these conceptual differences out. I don't want to torture you with questions but maybe a final one
Would it not be reasonable to also base the prior odds on effect sizes you found in the literature? E.g. if I can compute an average Cohen's d = 1 from several findings in the literature should this not be reflected in the prior odds? Of course the problem would be what a Cohen's d of 1 would mean in terms of the prior odds. Could you e.g. assume that H1 is double or three times as likely than H0?
Thanks a lot
Jonas
Hi Jonas,
In principle, the question of the presence of an effect is independent of the strength/size of that effect. I would argue that the prior odds can still be based on outcomes for earlier experiments, but then in terms of Bayes factors that were obtained earlier. These earlier BFs will generally be higher when Cohen's d is higher, but not always. So if we have n=5 and d=1, I am less confident that the effect exists than with n=5000 and d = 0.5.
Cheers,
E.J.
Hi E.J.,
perfect, many thanks for your help. Good luck with this and your other projects.
Best
Jonas