agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi Alon,
Cheers,
E.J.
Thanks E.J.
When I conduct frequentist analysis, repeated measures on means and mixed models with subject intercept as a random factor usually give very similar results. But I found this large discrepancy between Bayesian analysis on means and mixed models with the entire data set for several data sets. To me it seemed obvious that the difference is the number of data points... but maybe I'm missing something? Or conducting the wrong analysis? For example, this is what I'm using in R:
anovaBF(RT ~ IV + Subject, data = RTData, whichRandom="Subject")
(RTData is the full data set, the dependent is RT, IV is the independent)
Best,
Alon
I think that Richard Morey will have more insightful comments. I'll attend him to your post.
E.J.
Thanks, that will be greatly appreciated. I can also post a sample of the data if it would help.
Hi EJ. Sorry to bother. Any insight from Richard Morey on the case?
Not yet. Perhaps he will respond when you send him a personal Email?
Cheers,
E.J.
Oh, I don't want to be a bother. I understand now (at least partially) that its not the number of subjects or observations that made the difference.
I think I understood the difference between my results, and it simply comes down to error rates. Because the mixed model takes into account within-subject variability, cases with large within-subject variability will increase the BF in favor of the Null hypothesis. Specifically, in my case, it seems that the subjects with the larger effects also have larger variance in their responses. Does that make sense?
I think that this is the case because the reverse happened to me when I looked at a significant effect with a moderate BF10 (~3) when using averaged results and a large BF10 (~100) when using a mixed model. In that case, it turned out that subjects with the largest effect actually had the least amount of variability in their observations, which increase the BF in favor of the alternative hypothesis.