agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,

agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,

dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu

http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan

BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama

Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga

BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai

Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah

Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai

Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs

Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games

## Comments

Hi Kasia,

That's a remarkable test. It does make sense to me to present the quantile that the patient represents in the control population, and perhaps some uncertainty that comes with that quantile (for instance through bootstrapping or a Bayesian procedure). But a test...in the test you mention, you are still comparing the

meanof group 1 (the score of the single patient, in this case) to themeanof group 2. But why would you want to know whether the patient differs from themeanof the control group? And H0 in this case would be "the patient does not differ from the control group mean" -- but is this a plausible or interesting null to test? I don't know and this is a gut-level response, but I am a little puzzled.At any rate, I don't think there is a specific reason that it does not work in JASP -- the constraint was probably hard-coded in there, but the assumption that there is a common variance should make the test possible, although I am not 100% certain. I am attending Alexander Ly to this post, he might offer some insights.

Interesting problem.

Cheers,

E.J.

Hi Kasia,

The default Bayes factor based on the Cauchy distribution on the population effect size is set up in such a way that it returns one, whenever the data are uninformative and data sets with one of the group sizes less than two are considered uninformative.

The reason why such a data set is perceived as uninformative is because the problem two-sample t-test is parameterised with a grand mean, an effect size parameter in each group, and a shared standard deviation. With only one observation in group A, say, we cannot distinguish whether this observation is due to the grand mean or the presence of a population effect size.

Mathematically, in group A we have three unknowns (population grand mean, effect size, and standard deviation) and only one known quantity (the single observation). The assumption that the two groups have a shared standard deviation, allows us to remove only one unknown and we are then left with two unknowns (population grand mean, effect size). In effect, we have an equation with two unknowns and only one known quantity and I cannot solve this mathematically, see

Ly, A., Verhagen, A. J., & Wagenmakers, E.-J. (2016). An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72, 43-55

for a more thorough elaboration. In other words, using the default Bayesian two-sample t-test with group A consisting of only one participant returns a default Bayes factor of one.

To overcome this problem, we have to set up the model a bit differently, that is, assume a bit more based on what is known. There are various ad hoc way to hack it, but it requires a bit more thought. I hope that this answers your question, at least partly.

Cheers,

Alexander

Dear E.J. and Alexander,

Thanks a lot for your responses! Indeed, graphically I present my data as categorical scatters and clearly show that my patient falls within the distribution of the control group.

As for the quantification, the Crawford method is very popular in cognitive neuropsychology, in fact it's the accepted statistical approach to compare a single case to a group of controls (which is usually modest). Using Monte Carlo simulation it was shown robust against Type I Errors. For the details and reprints, you can see here: http://homepages.abdn.ac.uk/j.crawford/pages/dept/SingleCaseMethodology.htm#f

Actually, using the MATLAB formulas from https://sampendu.net/bayes-factors/ I applied the two-sample Bayesian t-test to my data and it yielded meaningful results.

I used the t2smpbf formula that gives the "BF10 for a two-sample t-test with t-statistic t and sample sizes nx and ny. (See Rouder et al., 2009 for details)". I wanted to recalculate my results with JASP to see if it replicates the results of the MATLAB function.

Therefore, I am wondering about your comment Alexander, because the Bayes Factors I have obtained on my data were not at all 1.

Please note that I am not a complete beginner in the Bayesian Approach. Thus excuse me if my questions/remarks are naive.

Thanks! Kasia

Hi Kasia,

My approach was via the likelihood of the raw data in relation to the parameters, which I believe is something different from calculating a statistic and entering into a test, because the transformations you do to the data are not necessarily reflected by the parameters. Regardless, I'm glad that you've worked out the problem.

Cheers,

Alexander