Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

Effect size for Wilconxon signed-rank test

Hi,

I am running a non-parametric paired samples analysis.

I've been reading about calculation of the effect size r for this analysis and most literature referes to the formula proposed by Rosenthal (1991). The formula is: r = Z/sqrt(N). In the case of JASP, the way the same coefficient r is computed seems to be quite different: W / ((n*(n+1))/2) * 2 - 1 (thank you Johnny van Doorn for the clarification).

If we assume N as the number of subjects (e.g., 10 subjects evaluated in two moments), the calculation of this effect size is (in my example) varies from r=.693 to r=.782, depending on whether the calculation is based on the Rosenthal formula or as it is implemented in JASP.

To add even more noise to this, Field (2009) and Pallant (2007) propose that when dealing with related samples, N should refer to the number of observations (i.e., 10x2 in my example) and thus this difference is even more pronounced (r=.490). I am reporting such analysis in a revision of a manuscript and I would like to have more certainty in how I should compute this ES, given the impact that this has for the magnitude of the effect.

Do you have any thought on the most accepted way of computing this?

Thank you very much for your attention


Best wishes

Pedro

Comments

  • Hi Pedro,

    To follow up on my tweet, here is an excerpt of an article we are currently working on (about the Bayesian version of the various nonparametric t-tests, found here https://arxiv.org/abs/1712.06941):

    "An often used standardized effect size for $W$ is the matched-pairs rank-biserial correlation, denoted $\rho_{mrb}$, which is the correlation coefficient used as a within subjects measure of association between a nominal dichotomous variable and an ordinal variable (Cureton 1956, Kerby 2014}. The transformation is as follows:

     $\rho_{mrb} = 1 - \frac{4W}{n ( n+1)}$. # equivalent to formula I gave you
    

    The matched-pairs rank-biserial correlation can also be expressed as the difference between the proportion of data pairs where $x_i > y_i$ versus $x_i < y_i$. "


    Basically, the formula we use is just a way to standardize the W statistic to cover the range [-1, 1]. I really like the straightforward and intuitive interpretation that it provides in terms of difference in proportions of data pairs where $x_i > y_i$ versus $x_i < y_i$.

    Could you tell me what Z you are talking about? Is the the normal approximation/transformation of the W statistic?

    Kind regards,

    Johnny

  • Dear Johnny,


    Thank you very much for your feedback.

    The formula that I am referring to is computed as follows: https://www.statisticshowto.datasciencecentral.com/wilcoxon-signed-rank-test/. The lowest sum of ranks (i.e., the lowest value between the sum of positive ranks and the sum of negative ranks) is used together with n to compute the Z-statistic.

    A typical approach is to obtain this value is to rely on the significance of the Wilcoxon test

    (qnorm(Model$p.value/2) (as reported by Andy Field)


    It is one of the outputs obtained with SPSS (and other commercial software) and is widely reported when researchers present the results of this test.


    Best wishes,

    Pedro

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games