Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

Question about mouse-tracking measures

Hello!🤠

I prepared an experiment in OpenSesame and I obtained mouse-tracking measures in R. I compared 3 cases. While there seems to be a significant difference in terms of AUC among 3 different cases (this is our expectation), no significant difference occurs in terms of MAD values among 3 cases. Is this normal? Is something wrong with my data? Do I also have to obtain a difference in terms of MAD values? Which measure do I need to take into consideration? Is it okay if I just take AUC?


Thank you 🤠

Comments

  • edited August 2020

    Hi there,

    when you say that you compared 3 cases, are you referring to 3 different conditions with mutliple observations each? If so, how many observations do you have in each condition? Which statistical test did you use to compare them?

    Usually, MAD and AUC are correlated quite strongly (I would guess r >.9) and should lead to very similar results. Could you check the correlation in your dataset?

    Best,

    Pascal

  • Hello,

    I have solved the problem. There was something I was missing with the data. All values are correlated like you said. Thank you for the answer. =)

  • HI @Pascal , I hope you are well.

    I have a methodological question if you don't mind.

    What is your opinion on using the mt_plot_aggregate to show/plot curvature differences found between participants rather than between stimuli conditions? I know this sounds vague, but can you think of any reasons not to take this approach?

    To illustrate, would it be possible, for instance, to compare trajectories between native and non-native speakers of English? There would be no difference in terms of stimuli/conditions. The only difference would be the groups of participants.

    Cheers

  • edited June 4

    Hi there,

    in my opinion, you can also use mouse-tracking to compare differences between participants, probably mostly related to comparing groups of participants (e.g., native and non-native speakers, as in your example).

    In this regard, I would particularly see two things that should be considered:

    1) Mouse-tracking differences could also be explained by other variables that differ between the participant groups, particularly if it is plausible to assume that they might affect how participants are using the mouse in general (e.g., if the age distribution is also different between the participant groups)

    2) In general, the discussion around whether it makes sense to compare the groups based on aggregate trajectories / aggregate curvature indices or use a trial level analysis, e.g., focusing on trajectory types, see, e.g., Wulff, D. U., Haslbeck, J. M. B., Kieslich, P. J., Henninger, F., & Schulte-Mecklenbeck, M. (2019). Mouse-tracking: Detecting types in movement trajectories. In M. Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods (pp. 131-145). New York, NY: Routledge. (preprint: https://psyarxiv.com/6edca/)

    Best,

    Pascal

  • Thank you so much for this, @Pascal !

    You are the best!

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games