Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

Understanding Bayesian Multiple Regression

Dear All, I'm new to Bayesian statistics, and I'm still trying to understand some of the assumptions and differences between this method and frequentist statistics. Basically, I want to understand the association between x1 and y, while also accounting for the variance of additional variables (x2 and x3). Long post coming up: 

I'm currently running into something I don't understand with regard to Bayesian Multiple Linear Regression and (regular) Linear Multiple regression. So basically, what I'm really interested in is the effects of one continuous variable, let's call this x1, on an outcome variable, y. I'm also interested in "controlling for" additional regressors, x2 and x3 by including them in the model. In other words, I want to know about the effects of x1 on y while accounting for the additional effects of x2 and x3, or y ~ x1 + x2 + x3 (with x1 being the main factor that I’m interested in). In a "regular" multiple linear regression, I can look at the t score of x1 to discern whether this variable has a statistically significant effect on variable y (all this is relatively straightforward, right?). We could also calculate the same effect a different way: we could calculate residuals of the relationship between x1 ~ x2 + x3, and y ~ x2 + x3, and correlate the residuals in x1 and residuals in y. In this way, we're still looking at the relationships between x1 and y, accounting for the variance attributed to x2 and x3, and we get the same resulting t-value and same amount of variance accounted for. In other words, this is the same calculation, just done two different ways. 


Doing a similar analysis in a Bayesian framework (I’m using JASP), this looks a little different. In this regression, ultimately I end up comparing two models: a null model that includes the regressors of no interest, which is then compared to a model that includes the factor I’m interested in. As I understand it, my null model is y ~ x2 + x3, and my alternative model is y ~ x1 + x2 + x3, which allows me to compare and determine the relative effect of x1, giving me a bayes factor for the effects of x1 + mean values for the regression coefficient for all the factors included. But what if I want to do a similar comparison as with the residuals for the frequentist linear regression? Here I’m taking the same residuals from before x1 residuals (controlling for x2 + x3), y residuals (controlling for x2 + x3), and doing a Bayesian linear regression of y residuals ~ x1 residuals. However, the resulting output from this model is not the same as what I get using the Bayesian multiple regression—the mean coefficients are different, as well as the Bayes factors. The coefficients are close but not identical (e.g., -5.4 vs. -5.6), and the Bayes factors are dissimilar. Ostensibly, these should be accounting for the same amount of variance, so I don’t understand why these results diverge (because at least in a frequentist sense, these should be identical calculations). To be clear, I’m not asking why the Bayesian and frequentist stats diverge, I’m asking why the two Bayesian analyses (one using all the variables, and one using the residuals) would result in different outcomes? Why are they so different?


My understanding is that it’s okay that these results are different, but I don’t actually know why. I realize it’s weird to mix methods in this way, but this is moreso for my understanding of how the variance for the additional variables is being accounted for. My inclination is that this difference is due to the model selection process associated with the Bayesian analysis? I still have a beginner understanding of Bayesian stats, but am trying to understand how this works. Can someone help by explaining why these results would diverge? 

Comments

  • Dear rpizzie,

    Thanks for your thoughtful question. I think there is a (Bayesian) issue with the two-step method, where you first compute the residuals and then introduce x1. First, what you ought to have is a distribution across each residual -- there is uncertainty in the regression coefficients for x2 and x3, and this ought to propagate to the residuals. Of course you could ignore this uncertainty and use the posterior mean, but then the correspondence between the two analysis methods would break down (to examine this, you could use a very, very large N, so the posterior uncertainty becomes negligible). I am also a little worried about correlations between the beta's not being taken into account in the two-step method, but I could be wrong there.

    Cheers,

    E.J.

  • Thanks, E.J. this is very helpful--I appreciate your response. This makes sense to me--that the residual model doesn't adequately account for the uncertainty that's introduced by X2 and X3. Thank you!

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games