Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

What to do if mt_check_resolution output does not look right?

Hi,

Mousetrap has a function mt_check_resolution that can be used to check whether the logging resolution of the mouse positions looks okay. In the example on the mousetrap website (https://pascalkieslich.github.io/mousetrap/reference/mt_check_resolution.html) the output of this function looks like this:

#> $summary
#>   Min. 1st Qu. Median   Mean 3rd Qu.   Max. 
#>  1.000 10.000 10.000  9.977 10.000 14.000 

Whereas for our data it looks something like this:

$summary
  Min. 1st Qu. Median   Mean 3rd Qu.   Max.
  1.00   9.00  16.00  23.01  17.00 5369.00

We used PCIbex rather than OpenSesame to collect our data, and ran the experiment on the web, which may explain why our data looks less clean. Also, it seems PCIbex does not log mouse coordinates when the mouse doesn't move, to save server space, which suggests that our long timestamp intervals (up to 5s) are due to the mouse not moving.

The question now is: how to proceed when the logging resolution doesn't look as neat? We tried resampling the data using the apparent median sampling rate in the data (~60 Hz) to interpolate the long logging pauses. Is this appropriate? Are there any best practices to clean up mouse tracking data collected via the web (e.g. outlier removal)?

As a follow-up question, does anyone have experience with analyzing mouse data using mixed effects models? We're getting a lot of singular fit warnings, as well as hugely inflated random variances, especially for AUC. We are not sure how to figure out what is going on there, and whether these issues may be related to noisy data or to our (quite complex) experimental design. So any insights are welcome!

Comments

  • Hi there,

    if mouse-tracking data are collected during the browser, it is indeed usually an issue that cursor positions are only recorded when the mouse is moved. To account for this issue, we extended the mt_resample function (documented here: http://pascalkieslich.github.io/mousetrap/reference/mt_resample.html) to allow for appropriately resampling the recorded positions. Specifically, we added the constant_interpolation argument that you can specify when you know the standard sampling rate during mouse movements (we usually recommend to set it to 2 or 3 times this value). If there are breaks without recorded positions that exceed this value, the resampling function will add constant positions for this interval (instead of performing linear interpolation, please see the function documentaton for details).

    In your case it seems the standard sampling interval during movements is 16 ms, so you could set constant_interpolaton to 32 or 48, like this:

    mt_data <- mt_resample(mt_data, step_size = 16, constant_interpolation = 32)

    Regarding the question of analyzing the measures, I would assume that particularly AUC (and MAD) should be prone to having large outlier values. An alternative measure to use could be the average deviation (AD). However, this measure should only be calculated from the resample trajectories, so in the above example, like this:

    mt_data <- mt_measures(mt_data, use = "rs_trajectories")

    Hope this helps!

    Best,

    Pascal

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games