Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

RoBMA Random-effects meta-analysis (with meta-regression)


I would like to use RoBMA, on JASP (preferably) or R, to conduct a Bayesian random-effects meta-analysis and meta-regression. I have 3 questions which I have asked separately elsewhere (JASP YouTube channel and another user's forum post here), but decided I would also put it together here on the forum for myself.

1. How can I work only with a random-effects model i.e., remove all fixed effects models from the 'Inference' and 'Plots' functions and then get the appropriate (model-averaged) estimates/plots? I am intrigued to know because this was a possibility mentioned on P.18 of Bartoš, Maier, and Wagenmakers' paper "simply removing the fixed effects models from RoBMA".

2. I also wish to explore the possibility of conducting a meta-regression to complement the main RoBMA analysis. I suspect it would be possible and sound to use JASP's Bayesian Linear Regression function for this purpose.

According to Cochrane Handbook for Systematic Reviews of Interventions:

"Meta-regressions are similar in essence to simple regressions, in which an outcome variable is predicted according to the values of one or more explanatory variables."

With a meta-analysis, since we are usually working with and reviewing aggregate data, does a regression analysis turn into a 'meta-regression' by virtue of using these data as part of a systematic review and meta-analysis?

In other words, is it OK to use the Bayesian Linear Regression function in JASP to conduct a Bayesian 'meta-regression' to complement the RoBMA analysis? Ideally with continuous and categorical (dummy-coded) potential effect moderators testing 3 models, e.g., participant characteristics, intervention characteristics, and general study characteristics.

Bergh, D.v.d., Clyde, M.A., Gupta, A.R.K.N. et al. A tutorial on Bayesian multi-model linear regression with BAS and JASP. Behav Res (2021).

3. How can I use (or plug-in) different point/variance estimators e.g., Hedges' g instead of the default Cohen's d (and apply the corresponding name/label to the figures)? For my analysis, I need to work with the standardized mean difference, but should the need arise, it would be great if I could use alternative estimators like Hedges' g to account for potentially small studies. Any advice on how to implement this on JASP/R would be appreciated.

I am new to the field and area of meta-analysis, so pardon me for my superficial understanding and if I do not understand whether there is a genuine difference between a meta-regression and an 'ordinary' regression for Bayesian analysis.

Thank you in advance!


  • I'll forward this to our experts



  • Hi jber3175,

    1) You can remove any type of models/prior specifications under the Models section. There is a checkbox at the bottom of the section called Set null priors . Selecting the checkbox will open additional settings that allow you to specify models for the null hypotheses. By clicking on the X behind the Spike(x) under the Heterogeneity (null) removes the fixed-effect models from the ensemble (as the heterogeneity parameter tau = 0 correspond to fixed-effect models). Nevertheless, I would advise doing this only if you have a strong justification for it. In a recent paper (under review), we showed that fixed-effect models actually out-predict random-effect models in many cases and constitute an interesting hypothesis. Furthermore, if the data are indeed predicted well by the fixed-effect hypothesis, your test for the presence/absence of the effect and publication bias will become weaker.

    2) Regarding the second question, I will just paste my response from the other thread. Let me know if there was something unclear:

    Currently, the Bayesian Meta-Analysis analysis does not support a metaregression. However, you are correct that you can obtain a similar functionality from the Bayesian Linear Regression analysis - it's important to keep two things in mind though:

    a) You have to use ``WLS Weights'' argument to pass the weighting of the studies (usually 1/se^2). You would discard information about the precision of the study effect size estimate otherwise.

    b) This will result in weighted least squares meta-regression that differs a bit from the fixed/random effects meta-regression models regularly used in psychology. Nevertheless, some authors (e.g., Stanley and Doucouliagos) that WLS meta-regression has better properties than fixed/random effects meta-regressions.

    3) You can use Hedge's g and the corresponding SE as input in the module, however, I'm not sure how does the small study correction interplay with the weighted likelihood. Especially whether it keeps the corresponding p-values cutoffs. I will need to do more research into this.



  • Dear Frantisek,

    1. Thank you again for clarifying this. Is it possible to share the pre-print of the paper?

    2. Is the "WLS Weights" argument accessible on JASP or only accessible on R?



Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games