Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

mt_import with data collected by PsychoPy

Hi all,

I have made mouse-tracking experiment using PsychoPy. In my data files ".csv" i have three columns that are intersting for me and they are mouse.x, mouse.y and mouse.time. I have very (i hope) simple problem with importing it to data.frame using mousetrap package in RStudio.


I tried in two ways

1:

raw_data <- read_bulk(extension = ".csv")

mt_import_mousetrap(raw_data, xpos_label = "mouse.x", ypos_label = "mouse.y", timestamps_label = "mouse.time")

there are a lot of warnings - FUN(newX[, i], ...) occured NA after transformations

and "error in command - 'if (any(diff(current_timestamps) < 0)) {': missing value TRUE/FALSE"

2:

raw_data <- read_bulk(extension = ".csv")

 mt_import_wide(raw_data, xpos_label = "mouse.x", ypos_label = "mouse.y", timestamps_label = "mouse.time")

No mt_id_label provided. A new trial identifying variable called mt_id was created.

No pos_ids provided. The following variables were found using grep:

error in command 'mt_import_wide(raw_data, xpos_label = "mouse.x", ypos_label = "mouse.y", ':

 No variables found for xpos.

And there is this column/variable, I can see it in raw_data.

I don't know what to do next.

If anyone could help me, I would be very thankfull. Which of theese mt_import i should use? And how to create correct command, to import my data?

I add attachment with one of my data files, if anyone would like to see how it looks.


Sorry for my English, I tried my best.


Kuba

Comments

  • Hi Kuba,

    I took a quick look at your dataset and wrote a demo script that reads the data into R and imports them into mousetrap.

    # Load libraries
    library(readbulk)
    library(mousetrap)
    
    # Read all files that are stored in folder raw_data within current working directory
    # (put the individual csv files in the folder)
    raw_data <- read_bulk("raw_data")
    
    # Only look at lines with mouse-tracking data for all variables
    # (this filter needs to be improved from someone with better knowledge of the data)
    raw_data <- subset(raw_data, is.na(mouse.x) == FALSE & mouse.x != "")
    
    # Import data into mousetrap
    mt_data <- mt_import_mousetrap(
      raw_data,
      xpos_label = "mouse.x",
      ypos_label = "mouse.y",
      timestamps_label = "mouse.time"
      )
    
    # Plot trajectories
    mt_plot(mt_data)
    
    

    This script worked for me with your demo file. It is basically the first variant you describe above but with an additional filter that excludes all rows in your dataset that do not contain mouse-tracking data (where e.g. mouse.x is either NA or has the value "" (empty character)). This filter of course needs to be improved by you given that I don't know what is contained in the different rows (i.e., which rows should enter the analysis).

    Hope this helps!

    Best,

    Pascal

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games