agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hello,
I can think of two reasons your analysis is slow: (1) You chose the bootstrap option in the estimation options, that means the analysis runs on 200 data sets, given that the number of samples is specified as 200 in your screenshot; changing the option to "none" will speed up the analysis, but it also means you won't be provided with confidence intervals. (2) Your data in JASP is scaled as "ordinal" which also slows down the analysis. If you wish to treat it as quasi-continuous you can change the scale of the data (https://jasp-stats.org/getting-started/, "Changing Variable Types").
Best,
Julius
Dear Julius,
Thank you for you quick answers. I have changed the scale of the data into scale type, but the slow situation doesn't improve. Regarding bootstrapping, I used to use R packages such as plspm and cSEM to perform PLS-SEM with the same dataset. With the same 200 or even 500 bootstrapping, it is quite obvious that plspm and cSEM can finish the analysis more quickly than JASP's PLS-SEM. I enjoy using JASP, so I really want to figure out what's the problem. Thank you very much for the answers.
Best wishes,
K.M.
Hmm, I agree that JASP will likely be slower than cSEM in R given that there is a bit of overhead with any analysis. I wonder if you can quantify the difference? Or might you be able to share the dataset so I can look into it?
Best,
Julius
Dear Julius,
I test the dataset with cSEM with 500 bootstrapping, it can finish in less than 11 secs.
R codes:
--------------------------------------------------------------------------------------
library(cSEM)
# initialization
#------------------------------------------------------------------------------
rm(list = ls())
encoding = "UTF-8" # To avoid warning message
# read data
file = "C:\\temp\\Data for PLS-SEM.csv"
D2P <- read.csv(file)
#-------------------------------------------------------------------------------
# setup model structure
#-------------------------------------------------------------------------------
# setup pls model
pls.model <- "
# Structural model
BI ~ UB + VB + PR + FR + TB + IB + PS
# Reflective measurement model
BI =~ BI1 + BI2 + BI3
UB =~ UB1 + UB2 + UB3 + UB4
VB =~ VB1 + VB2 + VB3 + VB4
PR =~ PR1 + PR2 + PR3 + PR4 + PR5 + PR6 + PR7 + PR8
FR =~ FR1 + FR2 + FR3 + FR4
TB =~ TB1 + TB2 + TB3 + TB4
IB =~ IB1 + IB2 + IB3 + IB4
PS =~ PS1 + PS2 + PS3
"
start.time <- Sys.time()
pls.result <- csem(.data = D2P,
.model = pls.model,
.approach_paths = 'OLS',
.disattenuate = FALSE,
.approach_weights = "PLS-PM",
.PLS_approach_cf = "dist_squared_euclid",
.PLS_weight_scheme_inner = 'path',
.handle_inadmissibles = "replace",
.resample_method = "bootstrap",
.R = 500,
.seed = 123,
.iter_max = 100)
end.time <- Sys.time()
# May conflict with dplyr
(summary_pls_result <- cSEM::summarize(pls.result))
(time.taken <- end.time - start.time)
---------------------------------------------------------------------------------------
But the JASP's PLS-SEM with 200 bootstrapping starting at 21:00, you can see the progress bar at 21:07. There seems a long way to go.
21:00
21:07
Please see the attached for the data file.
Thanks for you help.
Best wishes,
K.M.
you are correct. It is quite slow in JASP. I will look into it. May I have your permission to transform this into a GitHub issue?
Dear Julius,
You have my full permission to transform this into a GitHub issue. Thank you very much for you help.
Best wishes,
K.M.
Ah, so that was longer detective work than I anticipated, given that the issue is kind of obvious :) But in short, the issue comes from setting "disattenuate = TRUE". In your R code you have disattenuate = FALSE, which makes the code run smooth because the resampling somehow does not produce inadmissible results. In JASP you have the checkbox for disattenuation checked, meaning it is set to TRUE, and then cSEM produces inadmissible results, and a lot, and having that handling set to "replace" means it is resampled A LOT. I dont really know how the disattenuation actually affects this, but it does. However, since the same happens in R with cSEM this is not a bug.
Best,
Julius
And given that there was this bug https://github.com/jasp-stats/jasp-issues/issues/2260 you might not reproduce this as the checkbox for disattenuation has no effect in the current JASP version; it is always set to TRUE.
Dear Julius,
Thank you for solving my question.
K.M.