mt_remap_symmetric
Hi
"My code encountered some difficulties again, and it seems that the problem occurred during the mt_remap_symmetric step. My issue is that the origin is at the top-left corner of the screen, meaning that both the x and y coordinates increase as you move down and to the right, and there are no negative values. After performing the remapping with the default mt_remap_symmetric code, the result looks strange. So, what should I do to mirror the right-side trajectories to the left?"
Any advice would be greatly appreciated.
Below is my code and data structure
library(mousetrap) library(readbulk) > raw_data <- read_bulk(directory = "D:/networkanalysis/xsbdata", extension = ".csv") mt_data <- mt_import_wide(raw_data, + xpos_label = "x", + ypos_label = "y", + zpos_label = NULL, + timestamps_label = "t", + mt_id_label = NULL, + pos_sep = "_", + reset_timestamps = TRUE, + verbose = TRUE + ) No mt_id_label provided. A new trial identifying variable called mt_id was created. No pos_ids provided. The following variables were found using grep: 1240 variables found for timestamps. 1240 variables found for xpos. 1240 variables found for ypos. # 定义dimensions,假设你需要对齐 'xpos' 和 'ypos' 维度 > dimensions <- c('xpos', 'ypos') > # 对齐轨迹数据 > mt_data <- mt_align_start( + mt_data, + start = NULL, # 使用平均起始点对齐 + verbose = TRUE + ) No start coordinates were provided. Aligning to: 681.921875,709.196354166667 > > mt_data <- mt_remap_symmetric( + mt_data, + use = "trajectories", + save_as = "trajectories", + dimensions = c("xpos", "ypos"), + remap_xpos = "left", + remap_ypos = "up" + ) > > mt_data <- mt_exclude_initiation(mt_data, + use="trajectories", # 使用轨迹数据 + save_as="trajectories", # 保存修改后的结果 + dimensions=c("xpos","ypos"), # 指定位置维度,假设是 'xpos' 和 'ypos' + timestamps="timestamps", # 时间戳字段名称 + reset_timestamps=TRUE, # 是否重置时间戳 + verbose=TRUE # 显示进度信息 + ) mt_data <- mt_exclude_finish( + mt_data, + use = "trajectories", + save_as = "trajectories", + dimensions = c("xpos", "ypos"), + timestamps = "timestamps", + verbose =TRUE + ) mt_data <- mt_length_normalize( + mt_data, + use = "trajectories", # 原始轨迹数据 + dimensions = c("xpos", "ypos"), + save_as = "ln_trajectories", # 保存归一化的轨迹 + n_points = 20 # 归一化后的轨迹点数 + ) > > mt_data <- mt_time_normalize( + mt_data, + use = "trajectories", + save_as = "tn_trajectories", + dimensions = c("xpos", "ypos"), + timestamps = "timestamps", + nsteps = 101, + verbose = FALSE + ) > > mt_data <- mt_measures( + mt_data, # 使用整个mt_data对象,包含处理后的轨迹数据 + use = "ln_trajectories", # 使用长度归一化的轨迹 + save_as = "measures", # 将计算结果存储到"measures"数据框中 + dimensions = c("xpos", "ypos"), # 计算x和y位置 + timestamps = "timestamps", # 使用时间戳列 + flip_threshold = 0, # 设置 flip 阈值 + verbose = TRUE # 启用详细输出 + ) agg_data <- mt_aggregate_per_subject( + mt_data, # 你的数据对象 + use_variables = "xpos_flips", # 计算 AUC 值 + use2_variables = "exp_type", # 使用 exp_type 进行分组 + subject_id ="subID" # 不需要按 subID 分组 + ) > > t.test(xpos_flips ~ exp_type, data = agg_data) agg_data <- mt_aggregate_per_subject( + mt_data, # 你的数据对象 + use_variables = "AUC", # 计算 AUC 值 + use2_variables = "exp_type", # 使用 exp_type 进行分组 + subject_id ="subID" # 不需要按 subID 分组 + ) > > t.test(AUC ~ exp_type, data = agg_data) mt_plot(mt_data, use="tn_trajectories", color="exp_type")
mt_plot_aggregate(mt_data, use="tn_trajectories", color="exp_type", subject_id="subID")