agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi Herculano,
Thanks for the nice comments! Regarding your question, there are two things at play:
1) The R-output seems to do a subgroup analysis on the data, i.e., fitting an independent random effect meta-analyses to the same data set. Consequently, the heterogeneity estimate is different for each subgroup. The JASP output here does estimated marginal means. i.e., fitting a meta-regression and computing the group-specific effects under the pooled heterogeneity estimates. Both approaches are valid, but you can see that the tau estimate is lower for the first subgroup, which projects itself to narrower CI (which do not intercept 0).
Currently, you can do subgroup analysis in JASP by filtering the data and performing the analyses for each group separately, but we are working on incorporating this functionality in JASP too.
2) If your dependent variable is a ratio (i.e., RR, OR, HR....), it is usually recommended to perform the analysis on the log transformed variable. In fact, metafor and other packages usually output logRR etc when computing effect sizes. The normality assumption of the sampling distribution is met on the log transformation of the variable, and as such it is more appropriate for the analysis. You do however have to do an additional step when interpreting the results - using exponential transformation on the effect size estimate and its confidence intervals.
Cheers,
Frantisek
Hi Frantisek,
Thank you so much for your detailed and helpful response! I really appreciate the explanation about the differences between subgroup analysis and estimated marginal means, as well as the recommendation to use log transformations for ratio variables.
I tried performing the meta-analysis individually (by filtering the data for each group), and as you mentioned, the confidence intervals became narrower. For example, one of the results was 5.66% (95% CI 1.45% - 9.86%), as shown in the image I’ve attached. This approach worked much better for my case, and I can see how the pooled heterogeneity estimate might have influenced the initial results.
I also realized that using logOR is a great solution when dealing with ratio variables, as it allows for negative values and aligns better with the normality assumption of the sampling distribution. This makes a lot of sense, and I’ll definitely keep it in mind for future analyses.
Additionally, I noticed that the small number of studies I used (only 3) might have had a significant impact on the analysis and the calculations. I’ll consider this limitation when interpreting the results.
One thing I found interesting is the idea of using the logit transformation for proportions. When I looked at the R code I used, I saw that applying the logit transformation (log odds) and then converting back to proportions ensures that the results stay within the 0% to 100% range. This approach makes a lot of sense because, even if the log odds are negative, the final transformed proportions are always valid. I’ll explore this further in my analyses.
In cases where the results still exceed these bounds, I plan to manually report them as 0% or 100% in my articles, depending on the context, rather than presenting negative proportions or values above 100%.
Thanks again for your guidance and for clarifying these points. Your help has been invaluable, and I’m really grateful for the effort you put into explaining everything so clearly!
Best regards,
Herculano