agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
I think the easier way to do it is to select BF 10 rather than BF 01. I believe you'll get something close to 0.484 for BF INCL, for the Condition * Group interaction in the 'Analysis of Effects' table.
Here is the way *I* would verbally express the interaction result:
"The likelihood of the data given the alternative hypothesis is 0.484 times the likelihood of the data given the null hypothesis. Furthermore, since 0.48 is less than 3.0 there is not substantial evidence favoring the alternative hypothesis. Likewise, since 0.48 is greater than 0.33 there is not substantial evidence favoring the null hypothesis."
Selecting BF 01 instead of BF 10 leads to the same conclusions, but expressed a little differently:
"The likelihood of the data given the null hypothesis is 2.068 times the likelihood of the data given the alternative hypothesis. Furthermore, since 2.07 is less than 3.0 there is not substantial evidence favoring the null hypothesis. Likewise, since 2.07 is greater than 0.33 there is not substantial evidence favoring the alternative hypothesis."
(Note that 1/2.068 is approximately equal to .484, and 1/.484 is approximately equal to 2.068.)
R
Also, you want to select "best model on top" instead of "null model on top" so that the results are a little easier to interpret. And in general I would say the results concerning the interaction suggest "absence of evidence".
I appreciate the quick replies/help! As a small note to the original post, the frequentist ANOVA actually shows no significant interaction effect ("significant" was a typo on my end).
Would you mind explaining why selecting "best model" for the ordering would be more interpretable in this case? Below is the output with this setting (after also switching to view BF10).
A reviewer suggested that adding a Bayesian ANOVA could be helpful to show that there isn’t substantial evidence favoring the alternative hypothesis, which would complement the frequentist stats showing no Group and no Group × Condition interaction effects. My understanding is that comparing each effect against the null model using BF10 answers the question "How much more likely are the data under a model with this effect compared to the null?" and that seems like the most straightforward way to demonstrate weak or absent evidence for an effect (rather than comparing to the best model), especially in parallel with the frequentist results. Please let me know if I’m misunderstanding anything, though!
Though I wouldn't consider myself an expert, my opinion is that Bayesian statistical analysis requires lots of simplifying assumptions and approximations to make the analysis really Bayes' theorem. As a result, the more complex an analysis gets (i.e., the further it is from a t test), the less agreement there is on exactly how the analysis should be done.
R