Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

Interpreting the signs of GLM ordinal logistic regression

edited September 17 in JASP & BayesFactor

In the ordinal logistic regression of GLM in JASP, I don't know how to interpret the sign of the estimated value, so I would like some advice. 

Specifically, I will present a tentative hypothesis and variables and explain. 

It is a “self-interested hypothesis”, which would be that "the higher the income, the more opposed the redistribution." If the dependent variable is a ternary variable indicating support for or opposition to redistribution (1: in favor, 2: neutral, 3: opposed), and the independent variable is household income (1: low income, 2: medium income, 3: high income), 

then whether the estimated value is positive or negative would make this self-interested hypothesis valid? 

In my opinion, if we adopt the cumulative odds assumption, a negative coefficient means that the probability of belonging to a higher category (in this case, "opposite") is higher, but I am not sure about this and would like to hear your expert opinion.

I'm not an English speaker, so my explanation may not be very clear, but please forgive me.

Comments

  • I've asked our expert, but ChatGPT answer your question as follows:

    Short answer: with your coding (1 = in favor, 2 = neutral, 3 = opposed), a positive income coefficient in a cumulative‐logit (proportional odds) model means higher income → more opposition, which supports the self-interest hypothesis. A negative coefficient means the opposite.

    Why:

    Most software (incl. JASP’s ordinal GLM) fits the proportional-odds model as

    [

    \text{logit},\Pr(Y \le k \mid x)=\tau_k - \beta x, \quad k=1,2.

    ]

    • If β > 0, then for every 1-step increase in income, the odds of being at or below any cutpoint (k) decrease by a factor (e^{\beta}). Equivalently, the odds of being above that cutpoint (i.e., in a higher category) increase by (e^{\beta}). With your ordering (higher values = more opposed), probability mass shifts upward → more opposition.
    • If β < 0, odds shift toward lower categories → more support.

    Interpretation you can quote:

    • “Each one-level increase in income multiplies the odds of being more opposed (i.e., in category (>k)) by (e^{\beta}) for every cutpoint (k).”

    Example: if (\beta=0.40), then (e^{0.40}\approx 1.49): each step up in income increases the odds of being more opposed by ~49% (holding other predictors constant).

    Practical checks/tips:

    • Make sure the dependent variable is ordered exactly as you intend (1=favor < 2=neutral < 3=oppose). If you reverse the order, the sign flips.
    • Treating income as 1–2–3 assumes a linear step effect. If you want separate effects for medium vs high income, use dummy variables.
    • The proportional-odds assumption implies the same (\beta) works for both cutpoints (1|2 and 2|3). If that’s doubtful, consider testing/relaxing it (partial proportional odds).

    So: with your coding and the cumulative odds link, positive = more opposition; negative = more support.

  • Haha, I don't think I can improve on chatGPT's answer :'-)

    When the coefficient is positive, it means the predictor will increase the chances of landing in a higher category.

    Cheers,

    Johnny

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games