agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
I'll ask our EFA expert. Sorry for the tardy response, this slipped through the cracks...more to follow
Cheers,
E.J.
Probably too late but in case other people run into this issue too: Note that the fa.parallel function will by default run an EFA to extract a one factor solution to obtain the communality estimates and compute the eigenvalues from the correlation matrix with the communality estimates as diagonal. This is done both for the real correlation matrix as well as for the simulated data. This is not the usual implementation of parallel analysis, where eigenvalues are found from the correlation matrix (with the diagonal replaced by the squared multiple correlations in the case of PA-PAF), and can lead to different results. You can also run the usual parallel analysis procedure in fa.parallel by setting SMC = TRUE. Probably fa.parallel will then also yield 10 factors.
Hmmm I see our expert has not responded yet...I'll prompt him :-)
Sorry for the late response!
What you find is strange, because in JASP the EFA parallel analysis is just a vanilla implementation of
psych::fa.parallel(dataset)
Looking at your plot, it could be that this difference is due to chance anyway (because the simulated data can be a little different every time), even though you tried multiple times. The simulated-observed lines almost overlap at 6 factors.
In any case, we have to remind ourselves that this is just a tool for determining the number of factors. If you look at a plot like this where the differences are minimal and you think 6 factors is better (also taking into account, for example, subject knowledge), then I suggest using 6 factors.
Erik-Jan
Thank you so much for the explanation and help!
To follow up on this older thread:
I have the same issue in that JASP always suggests a different number of factors compared to R in parallel analysis, irrespective of which fa.parallel() settings I use, i.e., SMC = TRUE does not make a difference. I have tried this for 3 different combinations of questionnaires (different combinations of items from the same data set in this case), and I have repeated the parallel analysis several times.
Could there maybe be a different explanation for why this happens? The factor loadings are identical as expected when I use "minres" for both.
As an example, R suggests 3 whereas JASP suggests 1 factor here. I can see how both make sense, but this happens for any combination of items.
Any help is appreciated!
Does anyone know whether the question above can really just be due to differences in simulated data? I think the question might have slipped through the cracks.
As it is a consistent difference between R and JASP for all my data sub-sets and has happened before to other users I find that hard to believe. For the EFA that I will run next week, I just would like to make sure I can trust either R or JASP.
Thank you in advance!
(Adding info here for readers) The source of the discrepancy has been found and fixed: the number of principal components rather than the number of factors was being retrieved by JASP from the parallel analysis. See the corresponding pull request on GitHub