Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Supported by

Parallel Analysis in JASP shows persistent discrepancy with R across samples and items

Hello,

I am adding this as a new discussion, as there were not any responses to the older discussion on this that I followed up upon (https://forum.cogsci.nl/discussion/5382/parallel-analysis-for-efa-in-jasp#latest)

I have the same issue as described in the discussion above: JASP always suggests a different number of factors compared to R in parallel analysis, irrespective of which fa.parallel() settings I use, i.e., SMC = TRUE does not make a difference. I have tried this for 3 different combinations of questionnaires (different combinations of items from the same data set in this case), and I have repeated the parallel analysis several times. 

Could there maybe be a different explanation for why this happens, other than that the difference is due to chance (because the simulated data can be a little different every time) as pointed out by @evankesteren? The factor loadings are identical as expected when I use "minres" for both. And it seems odd to me that there is a consistent considerable difference due to chance.

As an example, R suggests 3 whereas JASP suggests 1 factor here. I can see how both make sense, but this happens for any combination of items. 

https://forum.cogsci.nl/uploads/477/QA52G3T7T33I.png There was an error displaying this embed.


Any help is appreciated!

Comments

  • I asked Erik-Jan (who has just started as assistant professor in Utrecht) and he mentions this is somewhat of a puzzle. "Someone" should study the parallel analysis method with help of the data presented. Let me see if I can find "someone"...

    Cheers,

    E.J.

  • Could you perhaps share the code and/ or data you use so that we can replicate this discrepancy? In the simple example below, I get basically identical results in JASP and R.

    dd <- read.csv("https://raw.githubusercontent.com/jasp-stats/jasp-desktop/development/Resources/Data%20Sets/debug.csv")
    ee <- psych::fa.parallel(dd[, c("contNormal", "contcor1", "contcor2")], fa = "fa", plot = FALSE)
    
    par(las = 1, bty = "n")
    plot(ee$fa.values, type = "b")
    lines(ee$fa.sim, type = "b", lty = 2, pch = 2)
    legend("topright", legend = c("observed", "simulated"), lty = 1:2, pch = 1:2, col = 1, bty = "n")
    
    

    and JASP:


  • Thank you for getting back to me.

    The scree plots are indeed identical in both examples in my data, too, so are the item factor loadings, but the number of factors suggested by parallel analysis differ.

    JASP:


    R:

    Scree plot in my initial post (looks the same as the JASP one I think)

    The recommendation for 3 factors does not change based on whether SMC is TRUE or FALSE, or whether I add the cor = "poly" argument (though I do get a warning then, which is understandable).

    A model with 1 factor has a worse fit than a model with 2 factors. A model with 3 factors has a better fit but the latter two factors are too small, so I settled for the model with 2 factors in this pilot study which has a pretty good fit already (RMSEA = .062; TLI = 0.954).

    As I have now collected the data from the second study I'd like to make sure I use the right method for parallel analysis.

    If it still helps if I were to send the anonymised data please let me know and I will do so (via a private message / email).

    Thank you for your help!

Sign In or Register to comment.

agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq, agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq , dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games