agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi @Michael_Jasper ,
In GLM we provide de GVIF (based on the vif function from the car package). I will update the helpfiles/interface to be more informative of this.
Cheers
Johnny
So you mean that the VIF value that GLM reports, which it calls VIF, is actually GVIF?
Please don't miss my question in the post above.
To add to that, is GVIF used throughout JASP, so that even linear regression is reporting GVIF (but calling it VIF)?
Or is GVIF only used for GLM because of the non-linearity that might be present with its typical use? And so not used with linear regression?
Michael, I think there might be some confusion as to what problem GVIF solves. GVIF is designed to accommodate categorical **predictors**, whereas VIF had been originally designed to accommodate numerical predictors only. As far as I know this as nothing to do with the difference between GLM with identity link (i.e. linear regression) and other link (e.g. logit for logistic regression). (G)VIF is concerned with predictors, not the outcome.
GLM is linear in its parameters regardless of the distribution of the outcome. I think this is what is causing you confusion, as you talk a lot about nonlinearity, but the predictor side of GLMs is the same regardless of the outcome distribution, what changes is the link function that links this linear predictor to the outcome, which is NOT the focus of (G)VIF.
@patc3 @JohnnyB @EJ I'm interested in collinearity between variables x and z. I did a multiple linear regression with them both (with a variable y as the dependent variable) in JASP to simply pull out a VIF value as a measure of this collinearity between them. BUT the problem is that x and z aren't linearly related to one another. And so the VIF measure of their collinearity might be inaccurate, as I explain below in my provisional write up:
"VIF calculation assumes linear relationships among variables, which is violated here. Therefore, their VIF values are shown with the caveat that they might be under- or over- estimates, possibly being so inaccurate as to be very misleading. Inaccuracy likely scales with the degree of non-linearity."
So, my interest in GVIF is that - by my understanding - it does NOT assume linearity and so can confer a measure of collinearity even for variables that aren't linearly related. Is this understanding correct?
If so, if GLM in JASP reports GVIF (instead of VIF) I can then do a spoof GLM with these variables to pull out the GVIF to use (my being interested in the GVIF values rather than the GLM itself). Or does multiple linear regression actually report GVIF (instead of VIF) itself?
If anything isn't clear, very happy to clarify on request.
sorry I'm not sure what the answer to your question is, so I'll let others chime in
Had a play around:
with same data in JASP: VIF with GLM is different value than VIF with multiple linear regression.
Very different values actually.
Is this because multiple linear regression reports VIF and GLM reports GVIF?
And/or is the GLM reporting upon the variables after they have been transformed in some way to create the GLM? This would prohibit me from just using it as a GVIF measure with my variables (which I'm interested in and not the GLM itself per se).