agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi,
That's an excellent question! Good to baptise the JAPS & BayesFactor subforum with. I'll leave it to the experts to answer, but for now I'd like to point out that you haven't uploaded the image. And could explain in more detail about which aspects of the interpretation you are unsure?
Cheers,
Sebastiaan
Check out SigmundAI.eu for our OpenSesame AI assistant!
Hi Guillon,
Thanks for your question! With respect to the interpretation, it would indeed be good to add the image. With respect to the Cauchy prior, your are right, we did not implement this for the ANOVA. We discussed it recently and then decided that it would perhaps not be all to helpful -- the current default works well. But I'll bring this up again. In the mean time, if you really want to tweak this parameter, you can do so in the BayesFactor package.
Cheers,
E.J.
Thanks for your answers. I was also wondering where my image was..
You can check it here:
G.
Hi Guillon,
OK. An entire discussion of all of the entries is perhaps going too far;
Maarten Marsman and I will write a paper doing just that (for a special issue --
we hope to be done in a few weeks). Anyway, let me tell you what I would conclude.
First I look at the "BF_10" column of the top table. This compares all the models against the null model. We see that "Condition" is a huge improvement. Not so for "Time" -- there is actually a little evidence against adding "Time" to the null model (BF_10 = 0.284, which means BF_01 = 1/.284 = 3.5 in favor of the null). To judge the value of adding the interaction, we can compare the model with two main effect (Condition + Time, with BF_10 = 2.772e+9) to the model that adds the interaction term (Condition + Time + ConditionTime, with BF_10 = 1.663e+8). As you see, the evidence against the null model is more compelling *without the interaction term. If we want to know the BF against the interaction term we exploit the fact that Bayes factors are transitive: denote the null model by 0, the model with main effects by 1, and the model that adds the interactions by 2. By transitivity we get BF_12 = BF_10 * BF_02 = BF_10 / BF_20 = 2.772e+9/1.663e+8 = 16.66867. That's pretty good evidence against the interaction.
A similar conclusion can be drawn from the analysis of effects shown in the second table. This analysis model-averages over the models shown in the top table. However, with few models you can get what you need from the top table (this is a little different when there are many models).
Perhaps this is also useful: http://www.ejwagenmakers.com/inpress/RouderEtAlinpressANOVAPM.pdf
Cheers,
E.J.
Tks a lot for this exahustive answer EJ,
Best,
G.
just found this - can be of use:
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1167&context=jps
Hi All,
I'm also new to JASP and wanted to ask a quick follow-up question on this topic.
I have a slightly larger design with two within vars (task-type, time) and one between (group). Im attaching a screen shot. Theoretically, I'm only interested in the Group x Time interaction. NHST for the Group x Time interaction is not significant, and I want to use JASP to indicate the amount of evidence in favor of H0.
What is the accurate way to indicate the evidence in favor of H0 regarding Group x Time ? Can I use the same calculation EJ showed above with B01?
Given that I am not interested in other effects, should I check "is Nuisance"?
Thank you !
Nitzan.
Hi Nitzan,
Yes, you can use the transitivity trick to compare the model with the interaction to the model that has the other terms but lacks the interaction. However, as you suggest, you can also designate those other terms as nuisance. These nuisance terms will then be part of the null model, and then you can simply inspect the BF of the interaction model versus the null model directly. Both the transitivity trick and the nuisance method should give you the same answer of course.
Cheers,
E.J.
Thanks for the explanation! I was wondering if JASP estimates the BF for the interactions alone or should we do the transitive calculation by hand?
Maybe I misunderstand, but if you enter the main effect as nuisance parameters (included in the null model) then the BF for the interactions will be outputted by JASP directly.
Cheers,
E.J.