agen judi bola , sportbook, casino, togel, number game, singapore, tangkas, basket, slot, poker, dominoqq,
agen bola. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 50.000 ,- bonus cashback hingga 10% , diskon togel hingga 66% bisa bermain di android dan IOS kapanpun dan dimana pun. poker , bandarq , aduq, domino qq ,
dominobet. Semua permainan bisa dimainkan hanya dengan 1 ID. minimal deposit 10.000 ,- bonus turnover 0.5% dan bonus referral 20%. Bonus - bonus yang dihadirkan bisa terbilang cukup tinggi dan memuaskan, anda hanya perlu memasang pada situs yang memberikan bursa pasaran terbaik yaitu
http://45.77.173.118/ Bola168. Situs penyedia segala jenis permainan poker online kini semakin banyak ditemukan di Internet, salah satunya TahunQQ merupakan situs Agen Judi Domino66 Dan
BandarQ Terpercaya yang mampu memberikan banyak provit bagi bettornya. Permainan Yang Di Sediakan Dewi365 Juga sangat banyak Dan menarik dan Peluang untuk memenangkan Taruhan Judi online ini juga sangat mudah . Mainkan Segera Taruhan Sportbook anda bersama
Agen Judi Bola Bersama Dewi365 Kemenangan Anda Berapa pun akan Terbayarkan. Tersedia 9 macam permainan seru yang bisa kamu mainkan hanya di dalam 1 ID saja. Permainan seru yang tersedia seperti Poker, Domino QQ Dan juga
BandarQ Online. Semuanya tersedia lengkap hanya di ABGQQ. Situs ABGQQ sangat mudah dimenangkan, kamu juga akan mendapatkan mega bonus dan setiap pemain berhak mendapatkan cashback mingguan. ABGQQ juga telah diakui sebagai
Bandar Domino Online yang menjamin sistem FAIR PLAY disetiap permainan yang bisa dimainkan dengan deposit minimal hanya Rp.25.000. DEWI365 adalah
Bandar Judi Bola Terpercaya & resmi dan terpercaya di indonesia. Situs judi bola ini menyediakan fasilitas bagi anda untuk dapat bermain memainkan permainan judi bola. Didalam situs ini memiliki berbagai permainan taruhan bola terlengkap seperti Sbobet, yang membuat DEWI365 menjadi situs judi bola terbaik dan terpercaya di Indonesia. Tentunya sebagai situs yang bertugas sebagai
Bandar Poker Online pastinya akan berusaha untuk menjaga semua informasi dan keamanan yang terdapat di POKERQQ13. Kotakqq adalah situs
Judi Poker Online Terpercayayang menyediakan 9 jenis permainan sakong online, dominoqq, domino99, bandarq, bandar ceme, aduq, poker online, bandar poker, balak66, perang baccarat, dan capsa susun. Dengan minimal deposit withdraw 15.000 Anda sudah bisa memainkan semua permaina pkv games di situs kami. Jackpot besar,Win rate tinggi, Fair play, PKV Games
Comments
Hi Jennifer,
I suspect that the 'mapped' pupil diameter is lost when the SMI fails to determine the camera-to-head distance, which it needs to convert pupil size in pixels to pupil size in millimeters.
What I would do is take all samples for which you do have both the px and mm values for pupil size, and do a linear regression to determine how you can go from px to mm. If px refers to pupil diameter, you can do a regression like so:
If px refers to pupil area (i.e. pixel count), you can do regression like so:
Does that make sense? Once you have established that relationship, you can simply calculate the mapped pupil size for samples where it's missing.
Cheers!
Sebastiaan
Check out SigmundAI.eu for our OpenSesame AI assistant!
Hi Sebastiaan,
Yes, it does! Thanks so much for your reply and this suggestion. I have managed to generate the mm data using this method! There was a slight nonlinear relationship between mm and px.
I have attached a chart of two traces - orange is the pupil diameter (mm) data from the SMI output and blue is the pupil diameter (mm) data generated from the pixel data.
Do you think the difference between these two traces suggests that the SMI output is smoothed as part of their calculation, as my generated trace seems much noisier? or would this have something to do with the regression method?
Thanks again!
Jen
It's certainly not the regression method, because that's something that happens for individual samples.
So yes, I suspect they're doing something like smoothing, but not just smoothing, because you see that they also detect missing data (blinks perhaps) a bit more accurately than your regression line does. So there's probably some logic built into their method to deal with missing data.
I would say, though, that your regression is good enough to replace those samples where the SMI mm data is missing. Don't you think?
Check out SigmundAI.eu for our OpenSesame AI assistant!
Yeah, I think it is quite good. However, the regression result varies between conditions and when this problem occurs, the mm data is missing for the whole condition.
The use of the headrest makes the variation in the regression result much less so I think my best way forward may be to make use of a headrest in case this problem creeps up. I will be confident that the regression result will be adequate for use across conditions then.
Just in case it is of interest, I have attached a graph pupil traces with the pupil diameter (mm) from the idf file of a condition with no missing data, the regenerated mm using the pixel data and regression result of this condition and then 2 more traces using the same pixel data from that condition but using the regression results from 2 other conditions (L15, L18). All conditions used for this had the same participant using a headrest during the same test session.